Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Chinese Journal of Biochemistry and Molecular Biology ; 37(1):1-10, 2021.
Article in Chinese | EMBASE | ID: covidwho-20244920

ABSTRACT

COVID-19 is a severe acute respiratory syndrome caused by a novel coronavirus, SARS-CoV- 2.COVID-19 is now a pandemic, and is not yet fully under control.As the surface spike protein (S) mediates the recognition between the virus and cell membrane and the process of cell entry, it plays an important role in the course of disease transmission.The study on the S protein not only elucidates the structure and function of virus-related proteins and explains their cellular entry mechanism, but also provides valuable information for the prevention, diagnosis and treatment of COVII)-19.Concentrated on the S protein of SARS-CoV-2, this review covers four aspects: (1 ) The structure of the S protein and its binding with angiotensin converting enzyme II (ACE2) , the specific receptor of SARS-CoV-2, is introduced in detail.Compared with SARS-CoV, the receptor binding domain (RBD) of the SARS-CoV- 2 S protein has a higher affinity with ACE2, while the affinity of the entire S protein is on the contrary.(2) Currently, the cell entry mechanism of SARS-CoV-2 meditated by the S protein is proposed to include endosomal and non-endosomal pathways.With the recognition and binding between the S protein and ACE2 or after cell entry, transmembrane protease serine 2(TMPRSS2) , lysosomal cathepsin or the furin enzyme can cleave S protein at S1/S2 cleavage site, facilitating the fusion between the virus and target membrane.(3) For the progress in SARS-CoV-2 S protein antibodies, a collection of significant antibodies are introduced and compared in the fields of the target, source and type.(4) Mechanisms of therapeutic treatments for SARS-CoV-2 varied.Though the antibody and medicine treatments related to the SARS-CoV-2 S protein are of high specificity and great efficacy, the mechanism, safety, applicability and stability of some agents are still unclear and need further assessment.Therefore, to curb the pandemic, researchers in all fields need more cooperation in the development of SARS-CoV-2 antibodies and medicines to face the great challenge.Copyright © Palaeogeography (Chinese Edition).All right reserved.

2.
Protein Sci ; 32(3): e4575, 2023 03.
Article in English | MEDLINE | ID: covidwho-2209205

ABSTRACT

The newly emerged SARS-CoV-2 causing coronavirus disease (COVID-19) resulted in >500 million infections. A great deal about the molecular processes of virus infection in the host is getting uncovered. Two sequential proteolytic cleavages of viral spike protein by host proteases are prerequisites for the entry of the virus into the host cell. The first cleavage occurs at S1/S2 site by the furin protease, and the second cleavage at a fusion activation site, the S2' site, by the TMPRSS2 protease. S2' cleavage site is present in the S2 domain of spike protein followed by a fusion peptide. Given the S2' site to be conserved among all the SARS-CoV-2 variants, we chose an S2' epitope encompassing the S2' cleavage site and generated single-chain antibodies (scFvs) through an exhaustive phage display library screening. Crystal structure of a scFv in complex with S2' epitope was determined. Incidentally, S2' epitope in the scFv bound structure adopts an alpha-helical conformation equivalent to the conformation of the epitope in the spike protein. Furthermore, these scFvs can bind to the spike protein expressed either in vitro or on the mammalian cell surface. We illustrate a molecular model based on structural and biochemical insights into the antibody-S2' epitope interaction emphasizing scFvs mediated blocking of virus entry into the host cell by restricting the access of TMPRSS2 protease and consequently inhibiting the S2' cleavage competitively.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , SARS-CoV-2/metabolism , Epitopes , Membrane Fusion , Spike Glycoprotein, Coronavirus/chemistry , Peptide Hydrolases , Virus Internalization , Mammals
3.
Nanotechnol Sci Appl ; 16: 1-18, 2023.
Article in English | MEDLINE | ID: covidwho-2197688

ABSTRACT

Aim: The experiments aimed to document the presence of the ACE2 receptor on human muscle cells and the effects of the interaction of these cells with the spike protein of the SARS-CoV-2 virus in terms of induction of pro-inflammatory proteins, as well as to assess the possibility of reducing the pool of these proteins with the use of graphene oxide (GO) flakes. Methods: Human Skeletal Myoblast (HSkM), purchased from Gibco were maintained in standard condition according to the manufacturer's instruction. The cells were divided into 4 groups; 1. C-control, 2. S-with addition of spike protein, 3. GO-with the addition of graphene oxide, 4. GO-S-with addition of GO followed by the addition of S protein. Protein S (PX-COV-P049) was purchased from ProteoGenix (France). GO was obtained from Advanced Graphene Products (Zielona Gora, Poland). The influence of all the factors on the morphology of cells was investigated using light and confocal microscopy. ACE2 protein expression on muscle cells was visualized and 40 pro-inflammatory cytokines were investigated using the membrane antibody array method. The protein profile of the lysate of cells from individual groups was also analyzed by mass spectrometry. Conclusion: The experiments confirmed the presence of the ACE2 receptor in human skeletal muscle cells. It has also been documented that the SARS-CoV-2 virus spike protein influences the activation of selected pro-inflammatory proteins that promote cytokine storm and oxidative stress in muscle cells. The use of low levels of graphene oxide does not adversely affect muscle cells, reducing the levels of most proteins, including pro-inflammatory proteins. It can be assumed that GO may support anti-inflammatory therapy in muscles by scavenging proteins that activate cytokine storm.

4.
Viruses ; 14(11)2022 Oct 31.
Article in English | MEDLINE | ID: covidwho-2118120

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) infection causes huge economic losses to the pig industry worldwide. DNAJA3, a member of the Hsp40 family proteins, is known to play an important role in the replication of several viruses. However, it remains unknown if it interacts with PEDV. We found that DNAJA3 interacted with PEDV S1, initially with yeast two-hybrid screening and later with Co-IP, GST pull-down, and confocal imaging. Further experiments showed the functional relationship between DNAJA3 and PEDV in the infected IPEC-J2 cells. DNAJA3 overexpression significantly inhibited PEDV replication while its knockdown had the opposite effect, suggesting that it is a negative regulator of PEDV replication. In addition, DNAJA3 expression could be downregulated by PEDV infection possibly as the viral strategy to evade the suppressive role of DNAJA3. By gene silencing and overexpression, we were able to show that DNAJA3 inhibited PEDV adsorption to IPEC-J2 cells but did not affect virus invasion. In conclusion, our study provides clear evidence that DNAJA3 mediates PEDV adsorption to host cells and plays an antiviral role in IPEC-J2 cells.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine , Animals , Chlorocebus aethiops , Porcine epidemic diarrhea virus/genetics , Adsorption , Virus Replication , Vero Cells , Proteins/pharmacology
5.
Viruses ; 14(8)2022 08 09.
Article in English | MEDLINE | ID: covidwho-1979415

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) has been endemic in most parts of the world since its emergence in the 1970s. It infects the small intestine and intestinal villous cells, spreads rapidly, and causes infectious intestinal disease characterized by vomiting, diarrhea, and dehydration, leading to high mortality in newborn piglets and causing massive economic losses to the pig industry. The entry of PEDV into cells is mediated by the binding of its spike protein (S protein) to a host cell receptor. Here, we review the structure of PEDV, its strains, and the structure and function of the S protein shared by coronaviruses, and summarize the progress of research on possible host cell receptors since the discovery of PEDV.


Subject(s)
Coronavirus Infections , Coronavirus , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Coronavirus/metabolism , Coronavirus Infections/veterinary , Porcine epidemic diarrhea virus/physiology , Spike Glycoprotein, Coronavirus/metabolism , Swine
6.
Chinese Journal of Biochemistry and Molecular Biology ; 37(1):1-10, 2021.
Article in Chinese | Scopus | ID: covidwho-1791680

ABSTRACT

COVID-19 is a severe acute respiratory syndrome caused by a novel coronavirus, SARS-CoV- 2.COVID-19 is now a pandemic, and is not yet fully under control.As the surface spike protein (S) mediates the recognition between the virus and cell membrane and the process of cell entry, it plays an important role in the course of disease transmission.The study on the S protein not only elucidates the structure and function of virus-related proteins and explains their cellular entry mechanism, but also provides valuable information for the prevention, diagnosis and treatment of COVII)-19.Concentrated on the S protein of SARS-CoV-2, this review covers four aspects: (1 ) The structure of the S protein and its binding with angiotensin converting enzyme II (ACE2) , the specific receptor of SARS-CoV-2, is introduced in detail.Compared with SARS-CoV, the receptor binding domain (RBD) of the SARS-CoV- 2 S protein has a higher affinity with ACE2, while the affinity of the entire S protein is on the contrary.(2) Currently, the cell entry mechanism of SARS-CoV-2 meditated by the S protein is proposed to include endosomal and non-endosomal pathways.With the recognition and binding between the S protein and ACE2 or after cell entry, transmembrane protease serine 2(TMPRSS2) , lysosomal cathepsin or the furin enzyme can cleave S protein at S1/S2 cleavage site, facilitating the fusion between the virus and target membrane.(3) For the progress in SARS-CoV-2 S protein antibodies, a collection of significant antibodies are introduced and compared in the fields of the target, source and type.(4) Mechanisms of therapeutic treatments for SARS-CoV-2 varied.Though the antibody and medicine treatments related to the SARS-CoV-2 S protein are of high specificity and great efficacy, the mechanism, safety, applicability and stability of some agents are still unclear and need further assessment.Therefore, to curb the pandemic, researchers in all fields need more cooperation in the development of SARS-CoV-2 antibodies and medicines to face the great challenge. © Palaeogeography (Chinese Edition).All right reserved.

7.
J Clin Med ; 11(3)2022 Jan 25.
Article in English | MEDLINE | ID: covidwho-1648261

ABSTRACT

(1) Background: This study aimed to analyze if the serum albumin levels of hospitalized SARS-CoV-2 (COVID-19) patients on admission could predict <30 days in-hospital all-cause mortality, and if glucose levels on admission affected this predictive ability. (2) Methods: A multicenter retrospective cohort of 1555 COVID-19-infected adult patients from public hospitals of the Madrid community were analyzed. (3) Results: Logistic regression analysis showed increased mortality for ages higher than 49 y. After adjusting for age, comorbidities and on-admission glucose levels, it was found that on-admission serum albumin ≥3.5 g/dL was significantly associated with reduced mortality (OR 0.48; 95%CI:0.36-0.62). There was an inverse concentration-dependent association between on-admission albumin levels and <30 days in-hospital all-cause mortality. However, when on-admission glucose levels were above 125 mg/dL, higher levels of serum albumin were needed to reach an association with survival. In vitro experiments showed that the spike protein S1 subunit of SARS-CoV-2 binds to native albumin. The binding ability of native albumin to the spike protein S1 subunit was decreased in the presence of an increasing concentration of glycated albumin. (4) Conclusions: On-admission serum albumin levels were inversely associated with <30 days in-hospital all-cause mortality. Native albumin binds the spike protein S1 subunit, suggesting that native albumin may act as a scavenger of the SARS-CoV-2 virus.

8.
Phytother Res ; 35(12): 6963-6973, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1596593

ABSTRACT

Symptoms and complications associated with severe SARS-CoV-2 infection such as acute respiratory distress syndrome (ARDS) and organ damage have been linked to SARS-CoV-2 spike protein S1-induced increased production of pro-inflammatory cytokines by immune cells. In this study, the effects of an extract of Garcinia kola seeds and garcinoic acid were investigated in SARS-CoV-2 spike protein S1-stimulated human PBMCs. Results of ELISA experiments revealed that Garcinia kola extract (6.25, 12.5, and 25 µg/ml) and garcinoic acid (1.25, 2.5, and 5 µM) significantly reduced SARS-CoV-2 spike protein S1-induced secretion of TNFα, IL-6, IL-1ß, and IL-8 in PBMCs. In-cell western assays showed that pre-treatment with Garcinia kola extract and garcinoic acid reduced expressions of both phospho-p65 and phospho-IκBα proteins, as well as NF-κB DNA binding capacity and NF-κB-driven luciferase expression following stimulation of PBMCs with spike protein S1. Furthermore, pre-treatment of PBMCs with Garcinia kola extract prior to stimulation with SARS-CoV-2 spike protein S1 resulted in reduced damage to adjacent A549 lung epithelial cells. These results suggest that the seed of Garcinia kola and garcinoic acid are natural products which may possess pharmacological/therapeutic benefits in reducing cytokine storm in severe SARS-CoV-2 and other coronavirus infections.


Subject(s)
Benzopyrans/pharmacology , Garcinia kola , Leukocytes, Mononuclear/virology , NF-kappa B , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/immunology , COVID-19 , Cells, Cultured , Garcinia kola/chemistry , Humans , Inflammation/drug therapy
9.
Infect Drug Resist ; 14: 5099-5105, 2021.
Article in English | MEDLINE | ID: covidwho-1547068

ABSTRACT

The change in the formal charge of 34 SARS-CoV-2 lineages from September 2020 to June 2021 was analyzed according to the monthly evidence of the European agency. The reported point mutations and small insertions are electrically neutral (17), positive (12), or negative (3). They had been found in the spike glycoprotein S,  in the RBD and S1/S2 regions, crucial for initiation of viral infection. The most often observed were positive mutations, especially D614G and E484K, located in the region of S1/S2 junction, and in the receptor-binding domain (RBD), respectively. They are related to G and A switching. Positive mutations are stretching equally in both areas, but in the RBD region, they are more dispersed. In the set of analyzed virus variants, the increasing tendency in the number of positively charged residues in spike protein was observed. Furthermore, the well-documented WHO classes show an increase in the COVID-19 percentage case fatality with the positive increase in the spike crucial region's total charge. The data mining, applying classifier algorithm based on the artificial neuronal network, confirms that the value and the distribution of additional positive charge in S may be important factors enabling virus impact to immunity. This may be promoted by the stronger long-range electrostatic attraction of the virus particle to the host cell, preceding the infection. The estimation of the potential energy for the RBD approaching the angiotensin-converting enzyme (ACE2) was presented.

10.
Vaccines (Basel) ; 9(11)2021 Nov 20.
Article in English | MEDLINE | ID: covidwho-1524234

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the current COVID-19 pandemic, has caused more than 4.5 million deaths worldwide. Severe and fatal cases of COVID-19 are often associated with increased proinflammatory cytokine levels including interleukin 6 (IL-6) and acute respiratory distress syndrome. In this study, we explored the feasibility of using plants to produce an anti-IL-6 receptor (IL-6R) monoclonal antibody (mAb) and examined its utility in reducing IL-6 signaling in an in vitro model, which simulates IL-6 induction during SARS-CoV-2 infection. The anti-IL6R mAb (IL6RmAb) was quickly expressed and correctly assembled in Nicotiana benthamiana leaves. Plant-produced IL6RmAb (pIL6RmAb) could be enriched to homogeneity by a simple purification scheme. Furthermore, pIL6RmAb was shown to effectively inhibit IL-6 signaling in a cell-based model system. Notably, pIL6RmAb also suppressed IL-6 signaling that was induced by the exposure of human peripheral blood mononuclear cells to the spike protein of SARS-CoV-2. This is the first report of a plant-made anti-IL-6R mAb and its activity against SARS-CoV-2-related cytokine signaling. This study demonstrates the capacity of plants for producing functionally active mAbs that block cytokine signaling and implies their potential efficacy to curb cytokine storm in COVID-19 patients.

11.
Mol Neurobiol ; 59(1): 445-458, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1491383

ABSTRACT

In addition to respiratory complications produced by SARS-CoV-2, accumulating evidence suggests that some neurological symptoms are associated with the disease caused by this coronavirus. In this study, we investigated the effects of the SARS-CoV-2 spike protein S1 stimulation on neuroinflammation in BV-2 microglia. Analyses of culture supernatants revealed an increase in the production of TNF-α, IL-6, IL-1ß and iNOS/NO. S1 also increased protein levels of phospho-p65 and phospho-IκBα, as well as enhanced DNA binding and transcriptional activity of NF-κB. These effects of the protein were blocked in the presence of BAY11-7082 (1 µM). Exposure of S1 to BV-2 microglia also increased the protein levels of NLRP3 inflammasome and enhanced caspase-1 activity. Increased protein levels of p38 MAPK was observed in BV-2 microglia stimulated with the spike protein S1 (100 ng/ml), an action that was reduced in the presence of SKF 86,002 (1 µM). Results of immunofluorescence microscopy showed an increase in TLR4 protein expression in S1-stimulated BV-2 microglia. Furthermore, pharmacological inhibition with TAK 242 (1 µM) and transfection with TLR4 small interfering RNA resulted in significant reduction in TNF-α and IL-6 production in S1-stimulated BV-2 microglia. These results have provided the first evidence demonstrating S1-induced neuroinflammation in BV-2 microglia. We propose that induction of neuroinflammation by this protein in the microglia is mediated through activation of NF-κB and p38 MAPK, possibly as a result of TLR4 activation. These results contribute to our understanding of some of the mechanisms involved in CNS pathologies of SARS-CoV-2.


Subject(s)
Microglia/metabolism , Neuroinflammatory Diseases/virology , Spike Glycoprotein, Coronavirus/metabolism , Animals , Caspase 1/metabolism , Cell Line , Furans/pharmacology , Indenes/pharmacology , Inflammasomes/metabolism , Interleukin-1beta/genetics , Interleukin-6/metabolism , Mice , Microglia/pathology , NF-kappa B/metabolism , Neuroinflammatory Diseases/pathology , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism , Nitriles/pharmacology , RNA, Small Interfering , Recombinant Proteins/metabolism , Sulfonamides/pharmacology , Sulfones/pharmacology , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
12.
Curr Top Med Chem ; 21(15): 1337-1359, 2021.
Article in English | MEDLINE | ID: covidwho-1329161

ABSTRACT

BACKGROUND: The novel strain SARS-CoV-2 of coronavirus diseases (COVID-19) became pandemic at the end of 2019 with an unprecedented global crisis by infecting around 11 million people in more than 200 countries. The condition has now been provoked by the demand, supply, and liquidity shocks that COVID-19 has attacked the lives of a vast population. OBJECTIVES: Researchers are therefore trying to encode and understand the viral genome sequence along with various potential targets to explore the transmission mechanism and the mode of treatment for COVID-19. The important structural proteins such as nucleocapsid protein (N), membrane protein (M), an envelope protein (E), and spike protein (S) related to COVID-19 are discussed in this manuscript. METHODS: The topology of these various targets has been explored utilizing structure-based design and crystallographic studies. RESULTS: The literature reported that the N-protein processes the viral genome to the host cell during replication. The "N-terminal domain" and "C-terminal domain" contribute towards localization in the endoplasmic region and dimerization respectively. The M protein determines the shape of coronavirus and also assists the S protein to integrate with the Golgi-endoplasmic region complex leading to the stabilization of the virion. The smallest hydrophobic viroporin termed "E" takes part in morphogenesis and pathogenesis during intracellular infection. The viral spike (S) protein attaches the cellular receptors and initiates virus-cell membrane fusions. The main protease in the proteolytic process during viral gene expression and replication has also been discussed. CONCLUSION: Currently, there is no permanent cure and treatment of COVID-19 hence researchers are repurposing a suitable combination of drugs including antiviral, antimalarial, antiparasitic, and antibacterial, hypertensive receptor blockers, immunosuppressants, anti-arthritis drugs, including ayurvedic formulations. In brief, it is justified that, for complete recovery, there is a need for deep and elaborate studies on genomic sequences and invading mechanisms in the host cell.


Subject(s)
COVID-19 Drug Treatment , Drug Design , Drug Discovery/methods , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Antiviral Agents , COVID-19/transmission , COVID-19/virology , Genome, Viral , Humans , Receptors, Virus , Spike Glycoprotein, Coronavirus/chemistry , Structure-Activity Relationship , Viral Proteins/chemistry , Virus Internalization
13.
Biosaf Health ; 3(5): 249-263, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1322010

ABSTRACT

The present pandemic has posed a crisis to the economy of the world and the health sector. Therefore, the race to expand research to understand some good molecular targets for vaccine and therapeutic development for SARS-CoV-2 is inevitable. The newly discovered coronavirus 2019 (COVID-19) is a positive sense, single-stranded RNA, and enveloped virus, assigned to the beta CoV genus. The virus (SARS-CoV-2) is more infectious than the previously detected coronaviruses (MERS and SARS). Findings from many studies have revealed that S protein and RdRp are good targets for drug repositioning, novel therapeutic development (antibodies and small molecule drugs), and vaccine discovery. Therapeutics such as chloroquine, convalescent plasma, monoclonal antibodies, spike binding peptides, and small molecules could alter the ability of S protein to bind to the ACE-2 receptor, and drugs such as remdesivir (targeting SARS-CoV-2 RdRp), favipir, and emetine could prevent SASR-CoV-2 RNA synthesis. The novel vaccines such as mRNA1273 (Moderna), 3LNP-mRNAs (Pfizer/BioNTech), and ChAdOx1-S (University of Oxford/Astra Zeneca) targeting S protein have proven to be effective in combating the present pandemic. Further exploration of the potential of S protein and RdRp is crucial in fighting the present pandemic.

14.
Comb Chem High Throughput Screen ; 24(8): 1271-1280, 2021.
Article in English | MEDLINE | ID: covidwho-1302072

ABSTRACT

BACKGROUND: Novel coronavirus is a type of enveloped viruses with a single-stranded RNA enclosing helical nucleocapsid. The envelope consists of spikes on the surface which are made up of proteins through which virus enters into human cells. Until now, there is no specific drug or vaccine available to treat COVID-19 infection. In this scenario, reposting of drug or active molecules may provide rapid solution to fight against this deadly disease. OBJECTIVE: We selected 30 phytoconstituents from the different plants which are reported for antiviral activities against coronavirus (CoVs) and performed in silico screening to find out phytoconstituents which have potency to inhibit specific target of the novel coronavirus. METHODS: We performed molecular docking studies on three different proteins of novel coronavirus, namely COVID-19 main protease (3CL pro), papain-like protease (PL pro) and spike protein (S) attached to ACE2 binding domain. The screening of the phytoconstituents on the basis of binding affinity compared to standard drugs. The validations of screened compounds were done using ADMET and bioactivity prediction. RESULTS: We screened five compounds biscoclaurine, norreticuline, amentoflavone, licoricidin and myricetin, using in silico approach. All compounds were found safe in In silico toxicity studies. Bioactivity prediction reveals that these compounds may act through protease or enzyme inhibition. Results of compound biscoclaurine norreticuline were more interesting as this biscoclaurine had higher binding affinity for the target 3CLpro and PLpro targets and norreticuline had a higher binding affinity for the target PLpro and Spike protein. CONCLUSION: Our study concludes that these compounds could be further explored rapidly as it may have potential to fight against COVID-19.


Subject(s)
Biological Products , COVID-19 , Antiviral Agents/pharmacology , Biological Products/pharmacology , Humans , Molecular Docking Simulation , SARS-CoV-2
15.
Int Immunopharmacol ; 85: 106654, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-505643

ABSTRACT

The present state of diagnostic and therapeutic developmental race for vaccines against the SARS CoV-2 (nCOVID-19) focuses on prevention and control of this global pandemic which also represents a critical challenge to the global health community. Although development of novel vaccines can prevent the SARS CoV-2 infections, it is still impeded by several other factors and therefore novel approaches towards treatment and management of this disease is the urgent need. Passive immunotherapy plays a vital role as a possible alternative to meet this challenge and among various antibody sources, chicken egg yolk antibodies (IgY) can be used as an alternative to mammalian antibodies which have been previously studied against SARS CoV outbreak in China. In this review, we discuss the strategies for the use of chicken egg yolk (IgY) antibodies in the development of rapid diagnosis and immunotherapy against SARS CoV-2. Also, IgY antibodies have previously been used against various respiratory bacterial and viral infections in humans and animals. Compared to mammalian antibodies (IgG), chicken egg yolk antibodies (IgY) have greater binding affinity to specific antigens, ease of extraction and lower production costs, hence possessing remarkable pathogen-neutralizing activity of pathogens in respiratory and lungs. We provide an overall importance for the use of monoclonal chicken egg yolk antibodies (IgY) using phage display method describing their potential passive immunotherapeutic application for the treatment and prevention of SARS CoV-2 infection which is simple, fast and safe way of approach for treating patients effectively.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Betacoronavirus/immunology , Cell Surface Display Techniques , Clinical Laboratory Techniques , Coronavirus Infections , Immunoglobulins/immunology , Pandemics , Pneumonia, Viral , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibody Affinity , Antibody Specificity , Betacoronavirus/genetics , COVID-19 , COVID-19 Testing , Chickens , Coronavirus Infections/diagnosis , Coronavirus Infections/therapy , Egg Yolk , Forecasting , Humans , Immunization, Passive , Mammals/immunology , Models, Molecular , Pneumonia, Viral/diagnosis , Pneumonia, Viral/therapy , RNA, Viral/genetics , SARS-CoV-2 , Single-Chain Antibodies/immunology , Species Specificity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , COVID-19 Serotherapy
16.
Transfus Apher Sci ; 59(3): 102804, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-154626

ABSTRACT

Covid-19 is characterized by weak symptoms in most affected patients whilst severe clinical complications, with frequent fatal issues, occur in others. Disease severity is associated with age and comorbidities. Understanding of viral infectious mechanisms, and antibody immune response, can help to better control disease progression. SARS-CoV-2 has a major impact on the Renin Angiotensin Aldosterone System (RAAS), through its binding to the membrane cellular glycoprotein, Angiotensin Converting Enzyme-2 (ACE-2), then infecting cells for replication. This report hypothesizes the possible implication of an autoimmune response, induced by generation of allo- or autoantibodies to ACE-2, or to its complexes with viral spike protein. This could contribute to some delayed severe complications occurring in affected patients. We also propose a strategy for investigating this eventuality.


Subject(s)
Antibodies, Viral/immunology , Autoantibodies/immunology , Autoimmunity , Betacoronavirus/immunology , Blood Coagulation , Coronavirus Infections/blood , Isoantibodies/immunology , Peptidyl-Dipeptidase A/immunology , Pneumonia, Viral/blood , Renin-Angiotensin System/physiology , Thrombophilia/etiology , Angiotensin-Converting Enzyme 2 , Antibody Specificity , COVID-19 , Coronavirus Infections/complications , Coronavirus Infections/immunology , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/immunology , Disease Progression , Disseminated Intravascular Coagulation/etiology , Humans , Pandemics , Peptidyl-Dipeptidase A/blood , Peptidyl-Dipeptidase A/physiology , Pneumonia, Viral/complications , Pneumonia, Viral/immunology , SARS-CoV-2 , Serine Endopeptidases/physiology , Severity of Illness Index , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Thrombophilia/blood , Thrombophilia/immunology , Time Factors
17.
J Med Virol ; 92(6): 595-601, 2020 06.
Article in English | MEDLINE | ID: covidwho-2181

ABSTRACT

From the beginning of 2002 and 2012, severe respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) crossed the species barriers to infect humans, causing thousands of infections and hundreds of deaths, respectively. Currently, a novel coronavirus (SARS-CoV-2), which has become the cause of the outbreak of Coronavirus Disease 2019 (COVID-19), was discovered. Until 18 February 2020, there were 72 533 confirmed COVID-19 cases (including 10 644 severe cases) and 1872 deaths in China. SARS-CoV-2 is spreading among the public and causing substantial burden due to its human-to-human transmission. However, the intermediate host of SARS-CoV-2 is still unclear. Finding the possible intermediate host of SARS-CoV-2 is imperative to prevent further spread of the epidemic. In this study, we used systematic comparison and analysis to predict the interaction between the receptor-binding domain (RBD) of coronavirus spike protein and the host receptor, angiotensin-converting enzyme 2 (ACE2). The interaction between the key amino acids of S protein RBD and ACE2 indicated that, other than pangolins and snakes, as previously suggested, turtles (Chrysemys picta bellii, Chelonia mydas, and Pelodiscus sinensis) may act as the potential intermediate hosts transmitting SARS-CoV-2 to humans.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Pandemics , Peptidyl-Dipeptidase A/chemistry , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Receptors, Virus/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Amino Acid Sequence , Angiotensin-Converting Enzyme 2 , Animals , Betacoronavirus/classification , Betacoronavirus/pathogenicity , Binding Sites , COVID-19 , China/epidemiology , Chiroptera/virology , Coronavirus Infections/virology , Eutheria/virology , Humans , Models, Molecular , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Phylogeny , Pneumonia, Viral/virology , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Interaction Mapping , Receptors, Virus/genetics , Receptors, Virus/metabolism , SARS-CoV-2 , Sequence Alignment , Sequence Homology, Amino Acid , Snakes/virology , Spike Glycoprotein, Coronavirus/classification , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Turtles/virology
18.
Comb Chem High Throughput Screen ; 24(8): 1271-1280, 2021.
Article in English | MEDLINE | ID: covidwho-745094

ABSTRACT

BACKGROUND: Novel coronavirus is a type of enveloped viruses with a single-stranded RNA enclosing helical nucleocapsid. The envelope consists of spikes on the surface which are made up of proteins through which virus enters into human cells. Until now, there is no specific drug or vaccine available to treat COVID-19 infection. In this scenario, reposting of drug or active molecules may provide rapid solution to fight against this deadly disease. OBJECTIVE: We selected 30 phytoconstituents from the different plants which are reported for antiviral activities against coronavirus (CoVs) and performed in silico screening to find out phytoconstituents which have potency to inhibit specific target of the novel coronavirus. METHODS: We performed molecular docking studies on three different proteins of novel coronavirus, namely COVID-19 main protease (3CL pro), papain-like protease (PL pro) and spike protein (S) attached to ACE2 binding domain. The screening of the phytoconstituents on the basis of binding affinity compared to standard drugs. The validations of screened compounds were done using ADMET and bioactivity prediction. RESULTS: We screened five compounds biscoclaurine, norreticuline, amentoflavone, licoricidin and myricetin, using in silico approach. All compounds were found safe in In silico toxicity studies. Bioactivity prediction reveals that these compounds may act through protease or enzyme inhibition. Results of compound biscoclaurine norreticuline were more interesting as this biscoclaurine had higher binding affinity for the target 3CLpro and PLpro targets and norreticuline had a higher binding affinity for the target PLpro and Spike protein. CONCLUSION: Our study concludes that these compounds could be further explored rapidly as it may have potential to fight against COVID-19.


Subject(s)
Biological Products , COVID-19 , Antiviral Agents/pharmacology , Biological Products/pharmacology , Humans , Molecular Docking Simulation , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL